ScienceIQ.com

Natural Gas - The Blue Flame

It is colorless, shapeless, and in its pure form, odorless. For many years, it was discarded as worthless. Even today, some countries (although not the United States) still get rid of it by burning it in giant flares, so large they can be seen from the Space Shuttle. Yet, it is one of the most valuable fuels we have. Natural gas is made up mainly ...

Continue reading...

NaturalGasTheBlueFlame
Astronomy

What is Dark Energy?

Because he originally thought the Universe was static, Einstein conjectured that even the emptiest possible space, devoid of matter and radiation, might still have a dark energy, which he called a ... Continue reading

WhatisDarkEnergy
Chemistry

What Is Reduction?

Long ago, in a laboratory far, far away...before the development of the atomic theory we now use, scientists believed in a principle called animism, and that the chemistry of different materials was ... Continue reading

WhatIsReduction
Physics

Single Molecule Electroluminescence

Incandescence and luminescence are two main ways of producing light. In incandescence, electric current is passed through a conductor (filament of a light bulb for example). The resistance to the ... Continue reading

Electroluminescence
Physics

Kinetic Theory of Gases

Air is a gas, and gases can be studied by considering the small scale action of individual molecules or by considering the large scale action of the gas as a whole. We can directly measure, or sense, ... Continue reading

KineticTheoryofGases

Ultraviolet Light

UltravioletLightUltraviolet light is a form of radiation which is not visible to the human eye. It's in an invisible part of the 'electromagnetic spectrum'. Radiated energy, or radiation, is given off by many objects: a light bulb, a crackling fire, and stars are some examples of objects which emit radiation. The type of radiation being emitted depends on the temperature of the object. A coal glowing red in a barbecue is cooler than our Sun, which appears yellow, which is cooler still than some stars which appear bright white.

If a prism is used to break-up the radiated light from an object into it's component colors, the 'visible light' which our eyes can see makes up only a small part of the total spectrum. Visible light runs from the familiar blue to green to yellow to orange to red. Red light is the least energetic of the colors of visible light, and blue is the most energetic. Beyond the red end of the visible part of the spectrum lies the infrared and radio radiation. Infrared 'light' is familiar to us as heat, while radio waves are used for TV and radio broadcasts.

Beyond the blue end of the visible spectrum lies ultraviolet light, X-rays and gamma-rays. All of the X-rays, gamma-rays and ultraviolet light emitted by stars are absorbed by the Earth's atmosphere. That is why we need to send our telescopes into space (such as Astro-2 !) in order to measure the ultraviolet light from stars and galaxies. Many scientists are interested in studying the invisible universe of ultraviolet light, since the hottest and most active objects in the universe give off large amounts of ultraviolet energy.