ScienceIQ.com

Torque

A force may be thought of as a push or pull in a specific direction. When a force is applied to an object, the object accelerates in the direction of the force according to Newton's laws of motion. The object may also experience a rotation depending on how the object is confined and where the force is applied. A hanging door is an excellent example ...

Continue reading...

Torque
Geology

Devils Postpile National Monument

Established in 1911 by presidential proclamation, Devils Postpile National Monument protects and preserves the Devils Postpile formation, the 101-foot Rainbow Falls, and the pristine mountain scenery. ... Continue reading

DevilsPostpileNationalMonument
Science

Subrahmanyan Chandrasekhar

NASA's premier X-ray observatory was named the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar (pronounced: su/bra/mon'/yon chandra/say/kar). ... Continue reading

SubrahmanyanChandrasekhar
Mathematics

What Is The Pythagorean Theorem?

Pythagoras was a famous Greek mathematician. He was particularly interested in the properties of triangles, and discovered a simple, fundamental relationship between the lengths of the sides of right ... Continue reading

PythagoreanTheorem
Biology

Are Bees Physicists?

Far-reaching research, and research that promises to join mathematics and biology, has been conducted by a mathematician at the University of Rochester, Barbara Shipman. She has described all the ... Continue reading

BeesPhysics

Guide to Propulsion

GuidetoPropulsionWhat is propulsion? The word is derived from two Latin words: pro meaning before or forwards and pellere meaning to drive. Propulsion means to push forward or drive an object forward. A propulsion system is a machine that produces thrust to push an object forward. On airplanes, thrust is usually generated through some application of Newton's third law of action and reaction. A gas, or working fluid, is accelerated by the engine, and the reaction to this acceleration produces a force on the engine. A general derivation of the thrust equation shows that the amount of thrust generated depends on the mass flow through the engine and the exit velocity of the gas. Different propulsion systems generate thrust in slightly different ways.

Why are there different types of engines? If we think about Newton's first law of motion, we realize that an airplane propulsion system must serve two purposes. First, the thrust from the propulsion system must balance the drag of the airplane when the airplane is cruising. And second, the thrust from the propulsion system must exceed the drag of the airplane for the airplane to accelerate. In fact, the greater the difference between the thrust and the drag, called the excess thrust, the faster the airplane will accelerate. Some aircraft, like airliners and cargo planes, spend most of their life in a cruise condition. For these airplanes, excess thrust is not as important as high engine efficiency and low fuel usage.

Since thrust depends on both the amount of gas moved and the velocity, we can generate high thrust by accelerating a large mass of gas by a small amount, or by accelerating a small mass of gas by a large amount. Because of the aerodynamic efficiency of propellers and fans, it is more fuel efficient to accelerate a large mass by a small amount. That is why we find high bypass fans and turboprops on cargo planes and airliners. Some aircraft, like fighter planes or experimental high speed aircraft, require very high excess thrust to accelerate quickly and to overcome the high drag associated with high speeds. For these airplanes, engine efficiency is not as important as very high thrust. Military aircraft typically employ afterburning turbojets. Future hypersonic aircraft will employ some type of ramjet or rocket propulsion.