ScienceIQ.com

Does Earth Have Its Own Neon Sign?

You might wonder what the Northern Lights and neon signs have in common. Actually, a lot! What makes luminous colors shimmer across the Northern sky? The answer is in the Sun. Charged particles are constantly ejected from the Sun. These particles, collectively called solar winds, travel toward Earth with an average speed of 400 kilometers per ...

Continue reading...

NorthernLights
Chemistry

What is Oxidation?

The term 'oxidation' derives from the ancient observation of rust (oxide) formation. Early chemists could determine an increase in the weight of a metal as it apparently captured something from the ... Continue reading

WhatisOxidation
Biology

Nature's Exceptions to Our Rules

We all learned in grade school that animals are classified into different categories: Mammals have fur, are warm blooded, give birth to their young and feed their babies milk. Birds have feathers, ... Continue reading

NaturesExceptions
Astronomy

Powerful Quasars

Quasars appear as distant, highly luminous objects that look like stars. Strong evidence now exists that a quasar is produced by gas falling into a supermassive black hole in the center of a galaxy. ... Continue reading

PowerfulQuasars
Engineering

Taming Twin Tornadoes

Every time a jet airplane flies through the sky, it creates two invisible tornados. They're not the kind of tornados that strike in severe weather. These tornados are called vortices and can cause ... Continue reading

TwinTornadoes

Ancient Planet

AncientPlanetLong before our Sun and Earth ever existed, a Jupiter-sized planet formed around a sun-like star. Now, almost 13 billion years later, NASA's Hubble Space Telescope has precisely measured the mass of this farthest and oldest known planet. The ancient planet has had a remarkable history, because it has wound up in an unlikely, rough neighborhood. It orbits a peculiar pair of burned-out stars in the crowded core of a globular star cluster. The new Hubble findings close a decade of speculation and debate as to the true nature of this ancient world, which takes a century to complete each orbit. The planet is 2.5 times the mass of Jupiter. Its very existence provides tantalizing evidence the first planets were formed rapidly, within a billion years of the Big Bang, leading astronomers to conclude planets may be very abundant in the universe.

The planet lies near the core of the ancient globular star cluster M4, located 5,600 light-years away in the northern-summer constellation Scorpius. Globular clusters are deficient in heavier elements, because they formed so early in the universe that heavier elements had not been cooked up in abundance in the nuclear furnaces of stars. Some astronomers have therefore argued that globular clusters cannot contain planets, because planets are often made of such elements. This conclusion was seemingly bolstered in 1999 when Hubble failed to find close-orbiting 'hot Jupiter'-type planets around the stars of the globular cluster 47 Tucanae. Now, it seems astronomers were just looking in the wrong place, and gas-giant worlds, orbiting at greater distances from their stars, could be common in globular clusters.

The story of this planet's discovery began in 1988, when the pulsar, called PSR B1620-26, was discovered in M4. It is a neutron star spinning just under 100 times per second and emitting regular radio pulses like a lighthouse beam. The white dwarf was quickly found through its effect on the clock-like pulsar, as the two stars orbited each other twice per year. Sometime later, astronomers noticed further irregularities in the pulsar that implied a third object was orbiting the others. This new object was suspected to be a planet, but it also could have been a brown dwarf or a low-mass star. Debate over its true identity continued through the 1990s. A 13-billion year old planet orbiting a pair of long-dead stars in a crowded globular cluster: even for the Hubble Space Telescope, that's amazing!