ScienceIQ.com

How To Calculate The Volume Of A Right Cone

Cones are used every day for a variety of purposes. Perhaps the most useful application of the cone shape is as a funnel. For finding the volume, a cone is best viewed as a stack of circles, each one smaller than the one before, until the last is no more than a point on the line that passes through the center of each circle throughout the length of ...

Continue reading...

VolumeOfARight Cone
Physics

The Physics of Sandcastles

Give a plastic bucket and a shovel to a child, then turn her loose on a beach full of sand. She'll happily toil the day away building the sandcastle to end all sandcastles. It's pure fun. It's also ... Continue reading

Sandcastles
Astronomy

The Wilkinson Microwave Anisotropy Probe (WMAP)

The cosmic microwave background (CMB) radiation is the radiant heat left over from the Big Bang. It was first observed in 1965 by Arno Penzias and Robert Wilson at the Bell Telephone Laboratories in ... Continue reading

WilkinsonMicrowaveAnisotropyProbe
Chemistry

Nitrogen Gas and Compounds

Nitrogen is a very interesting element. It is the seventh element of the periodic table, with seven electrons in its atoms. The somewhat unique combination of electronic structure and small atomic ... Continue reading

NitrogenGasandCompounds
Chemistry

What Is The Periodic Table?

The periodic table of the elements is a representation of all known elements in an orderly array. The periodic law presented by Dmitri Mendeleev in 1869 stated that if the (known) elements are ... Continue reading

WhatIsThePeriodicTable

The Brave and Cold Ulysses

TheBraveandColdUlyssesDeep space is cold. Very cold. That's a problem--especially if you're flying in an old spaceship. And your power supplies are waning. And the fuel lines could freeze at any moment. Oh, and by the way, you've got to keep flying for thirteen more years. It sounds like a science fiction thriller, but this is really happening to the spacecraft Ulysses. Ulysses was launched in 1990 on a five-year mission to study the sun. The craft gathered new data about the speed and direction of the solar wind. It discovered the 3D shape of the sun's magnetic field. It recorded solar flares on the sun, and super-solar flares from distant neutron stars. Ulysses even flew through the tail of comet Hyakutake, an unexpected encounter that delighted astronomers. The mission was supposed to end in 1995, but Ulysses was too successful to quit. NASA and the ESA have granted three extensions, most recently in Feb. 2004. Ulysses is scheduled to keep going until 2008, thirteen years longer than originally planned.

Ulysses' extended mission, as before, is to study the sun. But at the moment Ulysses is far from our star. It's having an encounter with Jupiter, studying the giant planet and its magnetic field. Sunlight out there is 25 times less intense than what we experience on Earth, and Ulysses is getting perilously cold. Back in the 1980's, when Ulysses was still on Earth and being assembled, mission planners knew that the spacecraft would have to endure some low temperatures. So they put dozens of heaters onboard, all powered by a Radioisotope Thermoelectric Generator, or

Fuel lines are critical to the mission. They deliver hydrazine propellant to the ship's eight thrusters. Every week or so, ground controllers fire the thrusters to keep Ulysses' radio antenna pointing toward Earth. The thrusters won't work if the hydrazine freezes. No thrusters means no communication. The mission would be lost. About eight meters of fuel line snake through the spaceship. Every twist and turn is a possible cold spot, a place where the hydrazine can begin to solidify. The temperature at any given point along the fuel lines is bewilderingly sensitive to what's going on elsewhere in the spacecraft. Turning on a scientific instrument