ScienceIQ.com

The Strange Spin of Uranus

Directional terms like north and south make sense here on Earth. The north and south axis of the Earth is relatively perpendicular to the plane of the Earth's orbit around the sun. Actually, Earth's axis of rotation is 23.5 degrees from the vertical. The variance from the vertical is what causes our seasons. ...

Continue reading...

UranusSpin
Astronomy

Sputnik and The Dawn of the Space Age

History changed on October 4, 1957, when the Soviet Union successfully launched Sputnik I. The world's first artificial satellite was about the size of a basketball, weighed only 183 pounds, and took ... Continue reading

Sputnik
Chemistry

SO2: What is it? Where does it come from?

Sulfur dioxide, or SO2, belongs to the family of sulfur oxide gases (SOx). These gases dissolve easily in water. Sulfur is prevalent in all raw materials, including crude oil, coal, and ore that ... Continue reading

SO2
Biology

The Handsome Betta Fish

The Betta fish is possibly the most handsome tropical fish out there. We say handsome because the male of the species is the bigger and more exotic one. Referred to as the jewel of the Orient, Betta ... Continue reading

BettaFish
Astronomy

Introduction to Constellations

'Constellation' is the name we give to seeming patterns of starsin the night sky. 'Stella' is the Latin word for star and a constellation is a grouping of stars. In general, the stars in these groups ... Continue reading

IntroductiontoConstellations

A New Twist on Fiber Optics

ANewTwistonFiberOpticsBy twisting fiber optic strands into helical shapes, researchers have created unique structures that can precisely filter, polarize or scatter light. Compatible with standard fiber optic lines, these hair-like structures may replace bulky components in sensors, gyroscopes and other devices. While researchers are still probing the unusual properties of the new fibers, tests show the strands impart a chiral, or 'handed,' character to light by polarizing photons according to certain physical properties. Several of these fibers, and their applications, are being developed in part with funds from the National Science Foundation Small Business Innovation Research program. In conventional optical fibers, light is transmitted from one end to the other through a round core housed within a concentric outer cladding. But, because a circular core does not develop handedness when twisted, the research team wound rectangular-core fibers to create a double helix.

When the team tested the twisted fiber, they discovered that some photons left the core and entered the cladding. Photons with the same handedness as the fiber entered the cladding whereas photons with handedness opposite that of the fiber remained in the core. With only a relatively loose twist-roughly 100 microns to form a complete turn-photons with a handedness that coincides with the fiber's twist scatter out of the core at a shallow angle and are trapped in the cladding. With a tighter twist, photons with the same handedness as the fiber scatter at a wider angle, allowing the photons to escape from the cladding into the surrounding space. Only light of a single polarization remains in the fiber. At the tightest twists, roughly one-millionth of a meter to complete a turn, photons with the same handedness as the structure are reflected backwards in the core.

Because the environment surrounding the fiber affects the wavelength of the light embedded in the cladding, 'loosely' twisted fibers can serve as sensors for pressure, temperature, torque and chemical composition. With moderately twisted fibers, researchers can manipulate the resulting polarized light in useful ways, leading to a range of applications such as gyroscopes for navigation systems, current meters for electric power stations, and chemical and materials analysis equipment. For tightly wound fibers, the amount of twist determines the precise wavelength of the light remaining in the fiber, producing light that is ideal for filter and laser applications.