ScienceIQ.com

The Devil's In The Details

Did you ever make a mistake converting English numbers to metric numbers? Let's hope that your mistake didn't cost anyone $125 million dollars. That's what happened to NASA. The Mars Climate Orbiter's mission to study Martian weather and climate was a part of NASA's faster-better-cheaper philosophy of the 1990s. On September 23, 1999, after firing ...

Continue reading...

TheDevilsInTheDetails
Biology

Tobacco Mosaic Virus

We all know that AIDS, SARS and flu are all caused by viruses. Most people, however, don't realize that some of the earliest work on viruses was done on a common plant virus, Tobacco mosaic virus ... Continue reading

TobaccoMosaicVirus
Engineering

Teeny Tiny Technology

What's the smallest thing you can imagine? Can you think of something extremely tiny that is also extremely strong--many times stronger than steel--and very flexible? Give up? The answer is carbon ... Continue reading

TinyTechnology
Medicine

Ultrasound In Medicine

In medical testing, ultrasound equipment is used to produce a sonogram, or a picture of organs inside the body. Ultrasound scanners do not use X-rays. They use waves of such high frequency that they ... Continue reading

UltrasoundInMedicine
Medicine

Facts About Angina

Angina is a recurring pain or discomfort in the chest that happens when some part of the heart does not receive enough blood. It is a common symptom of coronary heart disease (CHD), which occurs when ... Continue reading

FactsAboutAngina

Kinetic Theory of Gases

KineticTheoryofGasesAir is a gas, and gases can be studied by considering the small scale action of individual molecules or by considering the large scale action of the gas as a whole. We can directly measure, or sense, the action of the gas. But to study the action of the molecules, we must use a theoretical model. The model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. The molecules are in constant, random motion and frequently collide with each other and with the walls of any container.

The individual molecules possess the standard physical properties of mass, momentum, and energy. The density of a gas is simply the sum of the mass of the molecules divided by the volume which the gas occupies. The pressure of a gas is a measure of the linear momentum of the molecules. As the gas molecules collide with the walls of a container, the molecules impart momentum to the walls, producing a force that can be measured. The force divided by the area is defined to be the pressure. The temperature of a gas is a measure of the mean kinetic energy of the gas. The molecules are in constant random motion, and there is an energy (mass x square of the velocity) associated with that motion. The higher the temperature, the greater the motion.

In a solid, the location of the molecules relative to each other remains almost constant. But in a gas, the molecules can move around and interact with each other and with their surroundings in different ways. As mentioned above, there is always a random component of molecular motion. The entire fluid can be made to move as well in an ordered motion (flow). The ordered motion is superimposed, or added to, the normal random motion of the molecules. At the molecular level, there is no distinction between the random component and the ordered component. In a pitot tube, we measure pressure produced by the random component as the static pressure, and the pressure produced by the random plus the ordered component as the total pressure.