ScienceIQ.com

Moore's Law

Intel is the corporate giant known for manufacturing semiconductors, also called computer chips or integrated circuits (ICs), and its Pentium Processor. But Intel is also known for laying down the law. In 1965, just a few years before he would go on to co-found Intel, Gordon Moore set out an observation that has since become known as 'Moore's Law.' ...

Continue reading...

MooresLaw
Astronomy

Galaxy Cluster RDCS 1252.9-2927

A color composite image of the galaxy cluster RDCS 1252.9-2927 shows the X-ray (purple) light from 70-million-degree Celsius gas in the cluster, and the optical (red, yellow and green) light from the ... Continue reading

GalaxyClusterRDCS125292927
Engineering

The Right Stuff for Super Spaceships

Revolutions in technology - like the Industrial Revolution that replaced horses with cars - can make what seems impossible today commonplace tomorrow. ... Continue reading

SuperSpaceships
Mathematics

Origins Of The Meter

The origins of the meter go back to at least the 18th century. At that time, there were two competing approaches to the definition of a standard unit of length. Some suggested defining the meter as ... Continue reading

OriginsOfTheMeter
Biology

Luck Of The Irish?

In the 1800s many Irish were poor tenant farmers who farmed mainly for the landowner and relied on small plots for their own food. Because high yields of potatoes could be obtained from these small ... Continue reading

LuckOfTheIrish

Liquid Crystal Communication

LiquidCrystalCommunicationThe Information Age rides on beams of carefully controlled light. Because lasers form the arteries of modern communications networks, dexterous manipulation of light underpins the two definitive technologies of our times: telecommunications and the Internet. Now researchers at Harvard University have developed a new way of steering and manipulating light beams. Using droplets of liquid crystals--the same substance in laptop displays--the scientists can make a pane of glass that quickly switches from transparent to diffracting and back again. When the pane is transparent a laser beam passes straight through, but when the pane is diffracting, it splits the beam, bending it in several new directions.

The change is triggered by applying an electric field, so the pane could easily be controlled by the electric signals of a computer, offering a powerful new way to steer beams of light. Beyond telecommunications, one could imagine this light-steering ability being useful in astronomy. For example, these liquid-crystal panes could be used in reverse to combine (rather than split) beams of light from multiple telescopes. Combining light from many telescopes, a technique called interferometery, is a good way to search for distant planets around other stars. Another application: a liquid crystal pane held in front of the mirror of a telescope could be used to 'unwrinkle' light that has passed through Earth's turbulent atmosphere. Such adaptive optics telescopes could gain a crystal-clear view of the heavens from Earth's surface.

Liquid crystals are a class of liquids whose molecules are more orderly than molecules in regular fluids. Because of this orderliness, when these liquids interact with light, they can affect the light like crystals do. Making droplets of liquid crystals is nothing new; the basic technology has been around since the mid-1980s. Today you can find such droplets in the window-walls of some executives' offices. With the flip of a switch, the office's transparent windows magically change to opaque walls somewhat like frosted glass.