ScienceIQ.com

Live Fast, Blow Hard, and Die Young

Massive stars lead short, yet spectacular lives. And, they usually do not go quietly, instead often blowing themselves apart in supernova explosions. Astronomers are curious about the details of the final steps before these violent endings. A new image gives astronomers a look at this critical period of one massive star's life and imminent death. ...

Continue reading...

LiveFastBlowHardDieYoung
Biology

There's A Lot More To Vision Than Meets The Eye

Have you ever heard of Anton's Syndrome? It's a bizarre medical disorder involving a dramatic mismatch between sensory input and conscious awareness. Why is the syndrome bizarre? Not because the ... Continue reading

VisionMeetsTheEye
Astronomy

What Is Polarimetry?

Polarimetry is the technique of measuring the 'polarization' of light. Most of the light we encounter every day is a chaotic mixture of light waves vibrating in all directions. Such a combination is ... Continue reading

WhatIsPolarimetry
Physics

Ultraviolet Light

Ultraviolet light is a form of radiation which is not visible to the human eye. It's in an invisible part of the 'electromagnetic spectrum'. Radiated energy, or radiation, is given off by many ... Continue reading

UltravioletLight
Engineering

Hybrid Cars: The Magic Braking

You have undoubtedly seen one of the hybrid cars on the road. You probably heard that they are unlike any other fossil fuel or electric car. They are sort of both. ... Continue reading

HybridCars

What is Volcanic Ash?

VolcanicAshSmall jagged pieces of rocks, minerals, and volcanic glass the size of sand and silt (less than 1/12 inch or 2 millimeters in diameter) erupted by a volcano are called volcanic ash. Very small ash particles can be less than 1/25,000th of an inch (0.001 millimeter) across. Though called 'ash,' volcanic ash is not the product of combustion, like the soft fluffy material created by burning wood, leaves, or paper. Volcanic ash is hard, does not dissolve in water, is extremely abrasive and mildly corrosive, and conducts electricity when wet.

Volcanic ash is formed during explosive volcanic eruptions. Explosive eruptions occur when gases dissolved in molten rock (magma) expand and escape violently into the air, and also when water is heated by magma and abruptly flashes into steam. The force of the escaping gas violently shatters solid rocks. Expanding gas also shreds magma and blasts it into the air, where it solidifies into fragments of volcanic rock and glass.

Once in the air, hot ash and gas rise quickly to form a towering eruption column, often more than 30,000 feet, (9144 m) high. Larger rock fragments more than 2 inches, (5 cm) across ejected by the explosion typically fall within a few miles of the eruption site. However, wind can quickly blow fine ash away from the volcano to form an eruption cloud. As the cloud drifts downwind from the erupting volcano, the ash that falls from the cloud typically becomes smaller in size and forms a thinner layer. Ash clouds can travel thousands of miles, and some even circle the Earth.