ScienceIQ.com

The Coriolis Effect

The Earth, rotating at about 1000 miles per hour (1,609 km/hr), influences the flow of air and water on its surface. We call this the Coriolis Effect, named after French scientist Gaspard Coriolis, who made this discovery in the 19th century. As the Earth turns to the east, it causes air and water to swirl counterclockwise in the Northern ...

Continue reading...

Coriolis
Astronomy

Galaxy Cluster RDCS 1252.9-2927

A color composite image of the galaxy cluster RDCS 1252.9-2927 shows the X-ray (purple) light from 70-million-degree Celsius gas in the cluster, and the optical (red, yellow and green) light from the ... Continue reading

GalaxyClusterRDCS125292927
Engineering

Don't Blow A Gasket!

Don't blow a gasket! Who hasn't heard this old adage at some time? What does it actually mean, and for that matter, what is a gasket? Gaskets are simple structures used to fill in and seal the spaces ... Continue reading

DontBlowAGasket
Geology

Retreating Glaciers Spur Alaskan Earthquakes

Could an extra warm summer cause an earthquake in your backyard? Probably not... unless you live in Alaska. You probably know that friction in the earth's crust causes earthquakes, but did you know ... Continue reading

AlaskanEarthquakes
Biology

How Did Dogs Evolve?

While the status of the dog as humankind's best and oldest friend remains unchallenged, debate rages about just how far back the friendship goes. Fossils of domesticated dogs appear in the remains of ... Continue reading

HowDidDogsEvolve

Food Irradiation: A Safe Measure

FoodIrradiationASafeMeasureFood safety is a subject of growing importance to consumers. One reason is the emergence of new types of harmful bacteria or evolving forms of older ones that can cause serious illness. A relatively new strain of E. coli, for example, has caused severe, and in some cases life-threatening, outbreaks of food-borne illness through contaminated products such as ground beef and unpasteurized fruit juices. Scientists, regulators and lawmakers, working to determine how best to combat food-borne illness, are encouraging the use of technologies that can enhance the safety of the nation's food supply. Many health experts agree that using a process called irradiation can be an effective way to help reduce food-borne hazards and ensure that harmful organisms are not in the foods we buy. During irradiation, foods are exposed briefly to a radiant energy source such as gamma rays or electron beams within a shielded facility.

Irradiation is not a substitute for proper food manufacturing and handling procedures. But the process, especially when used to treat meat and poultry products, can kill harmful bacteria, greatly reducing potential hazards. The Food and Drug Administration has approved irradiation of meat and poultry and allows its use for a variety of other foods, including fresh fruits and vegetables, and spices. The agency determined that the process is safe and effective in decreasing or eliminating harmful bacteria. Irradiation also reduces spoilage bacteria, insects and parasites, and in certain fruits and vegetables it inhibits sprouting and delays ripening. For example, irradiated strawberries stay unspoiled up to three weeks, versus three to five days for untreated berries. Food irradiation is allowed in nearly 40 countries and is endorsed by the World Health Organization, the American Medical Association and many other organizations.

Irradiation does not make foods radioactive, just as an airport luggage scanner does not make luggage radioactive. Nor does it cause harmful chemical changes. The process may cause a small loss of nutrients but no more so than with other processing methods such as cooking, canning, or heat pasteurization. Federal rules require irradiated foods to be labeled as such to distinguish them from non-irradiated foods.