ScienceIQ.com

A Voggy Day On The Big Island

On the morning of February 8, 2000, Harry Kim, Director of Hawai`i County Civil Defense, asked radio stations on the Island of Hawai`i to broadcast a special message concerning the thick, acrid haze that had covered the southeastern part of the island for several days. This choking haze was not caused by a forest fire or industrial pollution but by ...

Continue reading...

AVoggyDayOnTheBigIsland
Astronomy

New Evidence Points to a Gamma-Ray Burst... In Our Own Backyard

Only 35,000 light years away lies W49B, the supernova remnant left over from the cataclysmic burst. New evidence pointing to a gamma ray burst origin for this remnant was discovered by X-ray data from ... Continue reading

GammaRayBurst
Astronomy

What Is Microgravity?

Gravity is a force that governs motion throughout the universe. It holds us to the ground and keeps the Earth in orbit around the Sun. Microgravity describes the environment in orbital space flight, ... Continue reading

Microgravity
Astronomy

What Is Polarimetry?

Polarimetry is the technique of measuring the 'polarization' of light. Most of the light we encounter every day is a chaotic mixture of light waves vibrating in all directions. Such a combination is ... Continue reading

WhatIsPolarimetry
Chemistry

When Chlorine Met Sodium...

Sodium is a required element in human physiology. The eleventh element in the periodic table, sodium is a soft, silvery white metal that can be easily cut through with a paring knife. It is highly ... Continue reading

WhenChlorineMetSodium

Why Does Cement Set?

WhyDoesCementSetConcrete has been known for literally thousands of years. It is a testament to the enduring strength of this material that concrete structures from those long-ago times are still standing strong today. What is going on inside concrete that makes this so? The answer is crystallization. When mixed with water, the molecular structure of the cement powder actually changes. Once all of the components are thoroughly mixed, and a more-or-less homogeneous mixture is obtained, the wetted components begin to recrystallize. But they don't just form the same things that they were before. What makes this work is that the components recrystallize as hydrated compounds. Each molecule of recrystallized and reformed material now incorporates a specific number of water molecules into the crystal. The water that was added to the mixture doesn't just evaporate or drain away; it actually becomes an integral part of the solid concrete.

As the wet mixture sets and hardens, billions of very small crystal blooms form throughout the mass and bind the whole thing together into a solid block. It is due to the physical interconnectedness of these crystal blooms and the other solid inclusions that concrete is so resistant to crushing, fracturing, stretching, and shearing. Once the wet mixture has solidified, it is not affected by water. Nor does water have much of an effect on the wet mixture once it has been put in place. A minor excess of water on the outside of the mass, such as occurs with standing water or when the surface is troweled smooth actually results in the formation of a smoother hard surface. The outside material separates from the larger aggregate particles and contains mostly recrystallized components and small aggregate particles. On solidification, these finer particles produce a smoother finished surface.

Too much water added to a mixture will prevent proper solidification; there is simply too much water to be included in the recrystallization process. Similarly, water that washes across the surface of the wet mixture carries away the dissolved components and prevents the mixture from solidifying. Mixtures for underwater applications - so-called 'hydraulic cement' - are blends designed to resist the intrusion of new water. It sets up quite quickly initially, which also keeps water out, and finishes setting in the normal way. Since air is not involved in the solidification process, it does not matter whether the concrete sets up to a solid block out of the water or completely under the water.