ScienceIQ.com

We Live In Two Distinct Visual Worlds

Have you ever wondered what it would be like to live on a planet where all the colors were different from what you're used to? Actually, you already have a lot of experience with two different worlds with two completely different color schemes. They're called night and day. ...

Continue reading...

VisualWorlds
Astronomy

The Constellations

The random arrangement of the stars visible to the naked eye has remained essentially unchanged since the time of the first written records. One of the earliest complete lists we have was compiled in ... Continue reading

TheConstellations
Biology

Coffee: Beverage Of Sedition

Coffee is the most popular drink in the world, consumed regularly by about one-third of the global population. Tea runs a close second. And then, of course, there's Coca-Cola. Why are coffee, tea, and ... Continue reading

CoffeeBeverageOfSedition
Medicine

Ultrasound In Medicine

In medical testing, ultrasound equipment is used to produce a sonogram, or a picture of organs inside the body. Ultrasound scanners do not use X-rays. They use waves of such high frequency that they ... Continue reading

UltrasoundInMedicine
Biology

If You're Bringing Cows, Bring Your Own Decomposers

Living organisms create a lot of waste products. Every year they deposit millions of tons of dead plant and animal matter on almost every corner of the earth - and they make dung, lots of dung. Where ... Continue reading

CowsAndDecomposers

Newton's Three Laws of Motion

NewtonsThreeLawsofMotionThe motion of an aircraft through the air can be explained and described by physical principals discovered over 300 years ago by Sir Isaac Newton. Newton worked in many areas of mathematics and physics. He developed the theories of gravitation in 1666, when he was only 23 years old. Some twenty years later, in 1686, he presented his three laws of motion in the 'Principia Mathematica Philosophiae Naturalis.' Newton's 1st law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia. The key point here is that if there is no net force acting on an object (if all the external forces cancel each other out) then the object will maintain a constant velocity. If that velocity is zero, then the object remains at rest. If an external force is applied, the velocity will change because of the force.

The 2nd law explains how the velocity will change. The law defines a force to be equal to change in momentum (mass times velocity) per change in time. Newton also developed the calculus of mathematics, and the 'changes' expressed in the second law are accurately defined in differential forms. (Calculus can also be used to determine the velocity and location variations experienced by an object subjected to an external force.) For an object with a constant mass, the 2nd law can be more easily expressed as the product of an object's mass and its acceleration (F = ma). For an external applied force, the change in velocity depends on the mass of the object. A force will cause a change in velocity; and likewise, a change in velocity will generate a force. The equation works both ways.

The 3rd law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal force on object A. Notice that the forces are exerted on different objects. The third law can be used to explain the generation of lift by a wing and the production of thrust by a jet engine.