ScienceIQ.com

Venus Is Hot Stuff

At first glance, if Earth had a twin, it would be Venus. The two planets are similar in size, mass, composition, and distance from the Sun. But there the similarities end. Venus has no ocean. Venus is covered by thick, rapidly spinning clouds that trap surface heat, creating a scorched greenhouse-like world with temperatures hot enough to melt lead ...

Continue reading...

VenusIsHotStuff
Astronomy

The Wilkinson Microwave Anisotropy Probe (WMAP)

The cosmic microwave background (CMB) radiation is the radiant heat left over from the Big Bang. It was first observed in 1965 by Arno Penzias and Robert Wilson at the Bell Telephone Laboratories in ... Continue reading

WilkinsonMicrowaveAnisotropyProbe
Biology

Vitreous Humor, Sclera and Other Yukky Eye Stuff

Eyes are one of the most complex organs humans have. In fact the optic nerve connection to the brain is so complex and delicate that no one has ever succeeded in transplanting the whole eye (the ... Continue reading

HumanEye
Physics

Bizarre Boiling

The next time you're watching a pot of water boil, perhaps for coffee or a cup of soup, pause for a moment and consider: what would this look like in space? Would the turbulent bubbles rise or fall? ... Continue reading

BizarreBoiling
Biology

Send In the Lady

One of the world's most recognizable insects is the ladybug. Ladybugs belong to a family of insects called Coccinellid, with about 5,000 species identified. But this little insect is more than just ... Continue reading

Ladybugs

What Powered the Big Bang?

WhatPoweredtheBigBangDuring the last decade, sky maps of the radiation relic of the Big Bang---first by NASA's Cosmic Background Explorer (COBE) satellite and more recently by other experiments, including Antarctic balloon flights and NASA's Wilkinson Microwave Anisotropy Probe (WMAP)---have displayed the wrinkles imprinted on the Universe in its first moments. Gravity has pulled these wrinkles into the lumpy Universe of galaxies and planets we see today. Yet still unanswered are the questions: why was the Universe so smooth before, and what made the tiny but all-important wrinkles in the first place?

Quantum fluctuations during the Big Bang are imprinted in gravitational waves, the cosmic microwave background, and in the structure of today's Universe. Studying the Big Bang means detecting those imprints. Einstein's theories led to the Big Bang model, but they are silent on these questions as well as the simplest: 'What powered the Big Bang?' Modern theoretical ideas that try to answer these questions predict that the wrinkles COBE discovered arose from two kinds of primordial particles: of the energy field that powered the Big Bang; and gravitons, fundamental particles of space and time.

Measurements by missions of the Beyond Einstein program could separate these different contributions, allowing us to piece together the story of how time, space, and energy worked together to power the Big Bang.