ScienceIQ.com

How Many Cows Does It Take To String A Tennis Racquet?

How many cows does it take to string a tennis racquet? According to Professor Rod Cross of the University of Sydney, an expert on the physics and technology of tennis, the answer is 3. Many top professional tennis players still prefer to string their racquets with natural gut instead of synthetics due to natural gut's soft feel, high elasticity and ...

Continue reading...

TennisRacquet
Astronomy

Exploring The 'Red Planet'

The planet Mars, sometimes called the 'Red Planet', has been an object of study for many centuries. The distinctive reddish color of the planet led some cultures to associate Mars with bloodshed and ... Continue reading

ExploringTheRedPlanet
Astronomy

A Map of the Sky

Niagara Falls, the Grand Canyon, Old Faithful... we know they're spectacular sites, but how did we find out about them? Early explorers took the time to map out the United States and as a result, you ... Continue reading

AMapoftheSky
Astronomy

The Big Bang Model

The Big Bang Model is a broadly accepted theory for the origin and evolution of our universe. It postulates that 12 to 14 billion years ago, the portion of the universe we can see today was only a few ... Continue reading

TheBigBangModel
Geology

What Are The Differences Between Global Warming, Greenhouse Effect, Greenhouse Warming, And Climate Change?

The term Global Warming refers to the observation that the atmosphere near the Earth's surface is warming, without any implications for the cause or magnitude. This warming is one of many kinds of ... Continue reading

GreenhouseEffectClimate Change

Cool Fuel Cells

CoolFuelCellsAstronauts have been using them for power aboard spacecraft since the 1960s. Soon, perhaps, they'll be just as common on Earth--powering cars, trucks, laptop computers and cell phones. They're called fuel cells. By combining hydrogen fuel with oxygen, fuel cells can produce plenty of electric power while emitting only pure water as exhaust. They're so clean that astronauts actually drink the water produced by fuel cells on the space shuttle. In recent years, the interest in bringing this environmentally friendly technology to market has become intense. But there are problems: You can't 'fill 'er up' with hydrogen at most corner gas stations. And fuel cell-based cars and computers are still relatively expensive. These obstacles have relegated fuel cells to a small number of demo vehicles and some specialty uses, such as power aboard the space shuttle and back-up power for hospitals and airports.

Now NASA-sponsored research is helping to tackle some of these obstacles. By finding a way to build 'solid oxide' fuel cells that operate at half the temperature of current designs--500C instead of a blistering 1,000C--researchers at the Texas Center for Superconductivity and Advanced Materials (TcSAM) at the University of Houston hope to make this kind of fuel cell both cheaper to manufacture and easier to fuel. Squeezing out the same power at half the temperature creates a domino effect of cost savings. For one, cheaper materials can be used to build them, rather than the expensive heat-tolerant ceramics and high-strength steels demanded by 1,000-degree fuel cells. And the automobiles and personal electronics that could use these fuel cells can also forgo exotic materials and elaborate heat-dissipation systems, lowering manufacturing costs. All of this tips the scales of economic feasibility in the right direction.

Support for fuel cells as the successor to the internal combustion engine is widespread. All of the major automobile manufacturers are busily developing fuel-cell vehicles, and President Bush recently proposed spending US$1.2 billion to help bring the technology to market. The portable electronics industry is also exploring miniature fuel cells as a more powerful, longer lasting replacement for batteries. There's still much work to be done. If all goes well, though, these thin films could pave the way to clean-running SUVs and other wonders of a hydrogen-based economy.