ScienceIQ.com

Jumping Starlight

'Twinkle, twinkle, little star, how I wonder what you are,' says the song by Jane Taylor. But stars don’t really twinkle; their light reaches the earth in a steady way. Why then do we see them flickering around in the sky? The answer is in the atmosphere. ...

Continue reading...

JumpingStarlight
Geology

Flipping Magnetic Fields

North and south. We take these directions for granted. Pull out a compass and the needle will swing to the north in response to the magnetism in the Earth's crust. The magnetic poles roughly coincide ... Continue reading

FlippingMagneticFields
Biology

When Did A Cat Become A Kitty?

It has long been thought that cats were first domesticated in Egypt, about 4000 years ago. Indeed, they were very highly thought of in ancient Egyptian society. It was illegal to kill or harm them, ... Continue reading

WhenDidACatBecomeAKitty
Physics

The Weakest Force

Did you know that gravity is the weakest force in the universe? Well, it's true! There are four fundamental forces (that we know of) in our universe: Strong Nuclear, Electromagnetic, Weak Nuclear ... Continue reading

WeakForce
Biology

Fahrenheit 98.6

When you're well, your body temperature stays very close to 37o C. (98.6o F.), whether you're playing basketball in an overheated gym or sleeping in the stands at an ice hockey game in a snowstorm. ... Continue reading

Fahrenheit986

Proteins In General

ProteinsInGeneralProteins form our bodies and help direct its many systems. Proteins are fundamental components of all living cells. They exhibit an enormous amount of chemical and structural diversity, enabling them to carry out an extraordinarily diverse range of biological functions.

Proteins help us digest our food, fight infections, control body chemistry, and in general, keep our bodies functioning smoothly. Scientists know that the critical feature of a protein is its ability to adopt the right shape for carrying out a particular function. But sometimes a protein twists into the wrong shape or has a missing part, preventing it from doing its job. Many diseases, such as Alzheimer's and 'mad cow', are now known to result from proteins that have adopted an incorrect structure.

Identifying a protein's shape, or structure, is key to understanding its biological function and its role in health and disease. Illuminating a protein's structure also paves the way for the development of new agents and devices to treat a disease. Yet solving the structure of a protein is no easy feat. It often takes scientists working in the laboratory months, sometimes years, to experimentally determine a single structure. Therefore, scientists have begun to turn toward computers to help predict the structure of a protein based on its sequence. The challenge lies in developing methods for accurately and reliably understanding this intricate relationship.