ScienceIQ.com

What's Blindsight?

Some people become blind after suffering an injury to their primary visual cortex at the back of their brain. Since the visual processing part of their brain is damaged, they can't see. Or can they? ...

Continue reading...

Blindsight
Geology

Predicting Floods

Several types of data can be collected to assist hydrologists predict when and where floods might occur. The first and most important is monitoring the amount of rainfall occurring on a realtime ... Continue reading

PredictingFloods
Astronomy

Light Fantastic

On the next hot summer day, imagine what would happen if the Sun suddenly became one million times brighter. Ice cream would quickly melt, sunscreen lotion wouldn't work very well, and that's just the ... Continue reading

LightFantastic
Science

Inventor Samuel Pierpont Langley

Born in the Boston suburb of Roxbury, Ma., Samuel Langley was one of America's most accomplished scientists. His work as an astronomy, physics, and aeronautics pioneer was highly regarded by the ... Continue reading

SamuelPierpontLangley
Engineering

Leaning Wonder of Engineering

Most everyone is familiar with the famous Leaning Tower of Pisa. It's known not so much for its engineering, as for the fact that it hasn't fallen yet. From an engineering standpoint, it is a study in ... Continue reading

TowerofPisa

How Lasers Work

HowLasersWorkLight is a fascinating thing. Or things, as the case may be. Electromagnetic energy that our eyes have developed to see, light has the same behavior and properties as all other electromagnetic radiation. But there is a dilemma that is most noticeable with light, arising from the fact that it is observed to behave at times as though it is composed of small, discrete particles, while at other times it behaves as though composed of continuous waves. This is known as the 'wave-particle duality' of light. In everyday applications this duality is unimportant, and for the most part we don't care whether we are bathed in waves or particles as long as the lights come on when we flick the switch or the sun shines when the storm clouds break apart.

But the wave-particle duality has great importance in more technical and scientific applications. In certain materials. electrons can be stimulated to switch energy levels within atoms and molecules. When those electrons go back into their original energy levels, they each give up a single 'particle' of energy called a 'photon', whose value is exactly equal to the difference in energy between the two electronic levels. When the material is made to lase in this way, the released photons are manipulated in such a way that they come out of the material as coherent waves of light. That is, the light waves all have the same wavelength, all have the same amplitude, and all the waves are in phase and traveling in parallel with each other.

Light from a non-coherent source radiates outward from that source in all directions. By contrast, a beam of laser light doesn't diverge but maintains a constant size. At least, that's the theory. In practice, laser beams do diverge in a manner that directly reflects the quality with which the laser device has been constructed. The better the laser device, the narrower, more coherent, and less divergent is the beam of laser light that it emits.