ScienceIQ.com

Civets Lesson

Recently a Chinese television producer fell ill with Severe Acute Respiratory Syndrome, better known as SARS. He is the first victim in many months, although an epidemic last year claimed nearly 8000 victims in several countries including the USA. Most of the victims were in China and nearby South Asian countries, although Toronto, Canada had ...

Continue reading...

CivetsLesson
Astronomy

318 Times as Massive as Earth

What is 318 times more massive than Earth? Jupiter, the fifth planet from the Sun (next in line after Earth and Mars). Jupiter is the largest planet in our Solar System. If you decided to take a ... Continue reading

Jupiter
Biology

Neurons

Until recently, most neuroscientists thought we were born with all the neurons we were ever going to have. As children we might produce some new neurons to help build the pathways - called neural ... Continue reading

Neurons
Medicine

Resistance is NOT Futile!

Maybe if you are a Star Trek heroine up against the Borg, 'resistance is futile.' But if you are a germ that makes people sick, resistance - to antibiotics - is not futile at all. ... Continue reading

ResistanceisNOTFutile
Science

The Wright Sister

When you think of airplanes, you may think of Wilbur and Orville Wright. Their early experiments led to the first manned airplane flight 100 years ago. There's another member of the Wright family, ... Continue reading

TheWrightSister

The Motion of An Aircraft

TheMotionofAnAircraftWe live in a world that is defined by three spatial dimensions and one time dimension. Objects move within this domain in two ways. An object translates, or changes location, from one point to another. And an object rotates, or changes its attitude. In general, the motion of any object involves both translation and rotation. The translations are in direct response to external forces. The rotations are in direct response to external torques or moments (twisting forces).

The motion of an aircraft is particularly complex because the rotations and translations are coupled together; a rotation affects the magnitude and direction of the forces which affect translations. To understand and describe the motion of an aircraft, we usually try to break down the complex problem into a series of easier problems.

We can, for instance, assume that the aircraft translates from one point to another as if all the mass of the aircraft were collected into a single point called the center of gravity. We can describe the motion of the center of gravity by using Newton's laws of motion. There are four forces acting on the aircraft; the lift, drag, thrust, and weight. Depending on the relative magnitudes and directions of these forces, the aircraft will climb (increase in altitude), dive (decrease in altitude), or bank (roll to one side). The magnitude of the aerodynamic forces depends on the attitude of the aircraft during the translations. The attitude depends on the rotations about the center of gravity when the aircraft is trimmed.