ScienceIQ.com

Crab Nebula

For millions of years a star shone in the far off constellation of Taurus. So far away, and so faint that even if our eyes were ten thousand times more sensitive, the star would still not be visible to us on the Earth. Then one day, in a few seconds, all that changed. An explosion beyond belief in its intensity lit up the heavens; it still shines, ...

Continue reading...

CrabNebula
Biology

Gray Wolf - Canis lupus

Historically, most Native Americans revered gray wolves, trying to emulate their cunning and hunting abilities. However, wolves became nearly extinct in the lower 48 states in the early part of the ... Continue reading

GrayWolfCanislupus
Biology

Bird Flu, Swine Flu, Human Flu

Influenza, unlike many viruses that make humans sick, can also affect birds and pigs. Generally strains of the influenza virus that causes disease in people are slightly different from those that ... Continue reading

BirdFluSwineFlu
Chemistry

Uses Of Hydrocarbons

The hydrocarbons are the most broadly used organic compounds known, and are quite literally the driving force of western civilization. The greatest amounts of hydrocarbons are used as fuel for ... Continue reading

UsesOfHydrocarbons
Biology

Send In the Lady

One of the world's most recognizable insects is the ladybug. Ladybugs belong to a family of insects called Coccinellid, with about 5,000 species identified. But this little insect is more than just ... Continue reading

Ladybugs

A Giant X-Ray Machine

AGiantXRayMachineThe first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equator, a surprising result since Jupiter's X-ray emission is mainly concentrated near the poles. Existing theories cannot easily explain the intensity or distribution of Saturn's X-rays. Chandra observed Saturn for about 20 hours in April of 2003. The spectrum, or distribution with energy of the X-rays, was found to be very similar to that of X-rays from the Sun. The observed 90 megawatts of X-ray power from Saturn's equatorial region is roughly consistent with previous observations of the X-radiation from Jupiter's equatorial region. This suggests that both giant, gaseous planets reflect solar X-rays at unexpectedly high rates. Further observations of Jupiter will be needed to test this possibility.

The weak X-radiation from Saturn's south-polar region presents another puzzle (the north pole was blocked by Saturn's rings during this observation). Saturn's magnetic field, like that of Jupiter, is strongest near the poles. X-radiation from Jupiter is brightest at the poles because of auroral activity due to the enhanced interaction of high-energy particles from the Sun with its magnetic field. Since spectacular ultraviolet polar auroras have been observed to occur on Saturn, Ness and colleagues expected that Saturn's south pole might be bright in X-rays. It is not clear whether the auroral mechanism does not produce X-rays on Saturn, or for some reason concentrates the X-rays at the north pole.

The same team detected X-radiation from Saturn using the European Space Agency's XMM-Newton Observatory. Although these observations could not locate the X-rays on Saturn's disk, the intensity of the observed X-rays was very similar to what was found with Chandra and consistent with a marginal detection of X-rays from Saturn reported in 2000 using the German Roentgensatellite (ROSAT).