ScienceIQ.com

Pluto: Beyond Neptune Or Not?

Did I catch you? Pluto (newly classified as a dwarf-planet) comes after planet Neptune. Right? Depends. Pluto takes 248 years to orbit the Sun. Most of that time Pluto's orbit puts it outside the orbit of Neptune. But, for 20 years out of each orbit cycle, Pluto's orbit brings it closer to the Sun than Neptune. Most recently, Pluto was in 8th place ...

Continue reading...

Pluto
Engineering

Hydropower Basics

Flowing water creates energy that can be captured and turned into electricity. This is called hydropower. Hydropower is currently the largest source of renewable power, generating nearly 10% of the ... Continue reading

HydropowerBasics
Astronomy

318 Times as Massive as Earth

What is 318 times more massive than Earth? Jupiter, the fifth planet from the Sun (next in line after Earth and Mars). Jupiter is the largest planet in our Solar System. If you decided to take a ... Continue reading

Jupiter
Biology

Bioenergy Basics

Biomass (organic matter) can be used to provide heat, make fuels, and generate electricity. This is called bioenergy. Wood, the largest source of bioenergy, has been used to provide heat for thousands ... Continue reading

BioenergyBasics
Engineering

X-Ray Astronomy vs. Medical X-Rays

It's natural to associate the X-rays from cosmic objects with an X-ray from the doctor's office, but the comparison is a bit tricky. A doctor's X-ray machine consists of two parts: an X-ray source at ... Continue reading

XRayAstronomyvsMedicalXRays

The Big Bang Model

TheBigBangModelThe Big Bang Model is a broadly accepted theory for the origin and evolution of our universe. It postulates that 12 to 14 billion years ago, the portion of the universe we can see today was only a few millimeters across. It has since expanded from this hot dense state into the vast and much cooler cosmos we currently inhabit. We can see remnants of this hot dense matter as the now very cold cosmic microwave background radiation which still pervades the universe and is visible to microwave detectors as a uniform glow across the entire sky. The Big Bang Model rests on two theoretical pillars. These two ideas form the entire theoretical basis for Big Bang cosmology and lead to very specific predictions for observable properties of the universe.

The first key idea dates to 1916 when Einstein developed his General Theory of Relativity which he proposed as a new theory of gravity. His theory generalizes Isaac Newton's original theory of gravity, c. 1680, in that it is supposed to be valid for bodies in motion as well as bodies at rest. Newton's gravity is only valid for bodies at rest or moving very slowly compared to the speed of light (usually not too restrictive an assumption!). A key concept of General Relativity is that gravity is no longer described by a gravitational 'field' but rather it is supposed to be a distortion of space and time itself. Physicist John Wheeler put it well when he said 'Matter tells space how to curve, and space tells matter how to move.' Originally, the theory was able to account for peculiarities in the orbit of Mercury and the bending of light by the Sun, both unexplained in Isaac Newton's theory of gravity. In recent years, the theory has passed a series of rigorous tests.

After the introduction of General Relativity a number of scientists, including Einstein, tried to apply the new gravitational dynamics to the universe as a whole. At the time this required an assumption about how the matter in the universe was distributed. The simplest assumption to make is that if you viewed the contents of the universe with sufficiently poor vision, it would appear roughly the same everywhere and in every direction. That is, the matter in the universe is homogeneous and isotropic when averaged over very large scales. This is called the Cosmological Principle. This assumption is being tested continuously as we actually observe the distribution of galaxies on ever larger scales. In addition the cosmic microwave background radiation, the remnant heat from the Big Bang, has a temperature which is highly uniform over the entire sky. This fact strongly supports the notion that the gas which emitted this radiation long ago was very uniformly distributed.