ScienceIQ.com

Genome Mapping: A Guide To The Genetic Highway We Call The Human Genome

Imagine you're in a car driving down the highway to visit an old friend who has just moved to Los Angeles. Your favorite tunes are playing on the radio, and you haven't a care in the world. You stop to check your maps and realize that all you have are interstate highway maps--not a single street map of the area. How will you ever find your friend's ...

Continue reading...

GenomeMappingHumanGenome
Engineering

Non-Flammable Fuel?

When we're flying high above the Earth, few of us give much thought to aircraft safety. We're usually too busy wondering when lunch is going to be served. But flying safely is a goal of NASA's Glenn ... Continue reading

NonFlammableFuel
Geology

Glaciers: Rivers of Ice

Glaciers are massive sheets of ice that occur on every continent of the world except Australia. These giant ice slabs have a humble beginning, as the tiny snowflakes in winter precipitation that ... Continue reading

Glaciers
Physics

The Fourth State of Matter

There are three classic states of matter: solid, liquid, and gas; however, plasma is considered by some scientists to be the fourth state of matter. The plasma state is not related to blood plasma, ... Continue reading

ForthState
Engineering

How Can A Bullet-proof Vest Stop A Bullet?

Here's an experiment: take the small coil springs from a dozen or so retractable pens and roll them together in a heap until they are thoroughly tangled and entwined. Now try to pull them apart from ... Continue reading

BulletproofVestStopABullet

Laser Guide Stars

LaserGuideStarsDid you ever wonder why we have to have the Hubble Space Telescope so high up in the Earth's orbit? Why not just make a bigger and better telescope on the surface?

The reason is that our atmosphere disturbs the heavens' image. Even on a clear night, there are countless movements of hot and cold air that cause, among other things, light diffraction and small particle scattering. All of these effects distort the image seen through a telescope. These disturbances can even be seen with the naked eye: they are the reason stars appear to twinkle in the night sky. That's why we have space telescopes, to avoid the atmospheric distortions. But imagine if we could somehow predict or measure these distortions in real time and correct for them.

That is exactly what laser guide stars and adaptive optics are all about. Originally developed in the US during the cold war for the Star Wars anti-missile project, this technology was declassified several years ago and is now being used to 'clean-up' Earth-based telescope images. Astronomers shine a really bright laser beam up into the night sky, close to the heavenly object (planet, star, galaxy, nebula, etc.) they want to observe. Then they image (record in real time with a camera) this laser beam, which appears in the sky as a bright, artificial laser-produced star. The image analysis tells them exactly how the laser beam has been distorted while passing through this particular part of the atmosphere. This then allows them to literally adapt / deform their telescope's mirrors with small actuators in such a way as to undo the atmospheric distortions. Sometimes dented and crinkly mirrors are just what you need to get a clear image.