ScienceIQ.com

How Many Cows Does It Take To String A Tennis Racquet?

How many cows does it take to string a tennis racquet? According to Professor Rod Cross of the University of Sydney, an expert on the physics and technology of tennis, the answer is 3. Many top professional tennis players still prefer to string their racquets with natural gut instead of synthetics due to natural gut's soft feel, high elasticity and ...

Continue reading...

TennisRacquet
Medicine

How a Horse Can Save Your Life?

Most people who have been vaccinated with the smallpox vaccine never really question what exactly was injected into their body. If they did, they might be surprised, and maybe thank a horse or two. ... Continue reading

HorseLife
Biology

Tea Time!

Did you know that a disease of coffee plantations made the British tea drinkers? In the 1700s Britain had many coffeehouses that served as popular social gathering places to discuss current events and ... Continue reading

TeaTime
Physics

What Is Radiofrequency Energy (Rf)?

Radiofrequency (RF) energy is another name for radio waves. It is one form of electromagnetic energy that makes up the electromagnetic spectrum. Some of the other forms of energy in the ... Continue reading

WhatIsRadiofrequencyEnergy
Biology

Beluga Whales

Beluga whales inhabit the Arctic and subarctic regions of Russia, Greenland, and North America. Some populations are strongly migratory, moving north in the spring and south in the fall as the ice ... Continue reading

BelugaWhales

The Oldest Light in the Universe

OldestLightUniverseA NASA satellite has captured the sharpest-ever picture of the afterglow of the big bang. The image contains such stunning detail that it may be one of the most important scientific results of recent years. Scientists used NASA's Wilkinson Microwave Anisotropy Probe (WMAP) to capture the new cosmic portrait, which reveals the afterglow of the big bang, a.k.a. the cosmic microwave background. One of the biggest surprises revealed in the data is the first generation of stars to shine in the universe first ignited only 200 million years after the big bang, much earlier than many scientists had expected. In addition, the new portrait precisely pegs the age of the universe at 13.7 billion years, with a remarkably small one percent margin of error. The WMAP team found that the big bang and Inflation theories continue to ring true.

The contents of the universe include 4 percent atoms (ordinary matter), 23 percent of an unknown type of dark matter, and 73 percent of a mysterious dark energy. The new measurements even shed light on the nature of the dark energy, which acts as a sort of anti-gravity. The light we see today, as the cosmic microwave background, has traveled over 13 billion years to reach us. Within this light are infinitesimal patterns that mark the seeds of what later grew into clusters of galaxies and the vast structure we see all around us today. Patterns in the big bang afterglow were frozen in place only 380,000 years after the big bang, a number nailed down by this latest observation. These patterns are tiny temperature differences within this extraordinarily evenly dispersed microwave light bathing the universe, which now averages a frigid 2.73 degrees above absolute zero temperature. WMAP resolves slight temperature fluctuations, which vary by only millionths of a degree.

Theories about the evolution of the universe make specific predictions about the extent of these temperature patterns. Like a detective, the WMAP team compared the unique 'fingerprint' of patterns imprinted on this ancient light with fingerprints predicted by various cosmic theories and found a match. WMAP will continue to observe the cosmic microwave background for an additional three years, and its data will reveal new insights into the theory of Inflation and the nature of the dark energy. WMAP is named in honor of David Wilkinson of Princeton University, a world-renowned cosmologist and WMAP team member who died in September 2002.