ScienceIQ.com

Near-Earth Supernovas

Supernovas near Earth are rare today, but during the Pliocene era of Australopithecus supernovas happened more often. Their source was an interstellar cloud called 'Sco-Cen' that was slowly gliding by the solar system. Within it, dense knots coalesced to form short-lived massive stars, which exploded like popcorn. ...

Continue reading...

Supernovas
Engineering

Bioinformatics

Bioinformatics is the field of science in which biology, computer science, and information technology merge to form a single discipline. The ultimate goal of the field is to enable the discovery of ... Continue reading

Bioinformatics
Geology

What is an Estuary?

An estuary is a partially enclosed body of water formed where freshwater from rivers and streams flows into the ocean, mixing with the salty sea water. Estuaries and the lands surrounding them are ... Continue reading

WhatisanEstuary
Geology

Is the Dead Sea really dead?

The Dead Sea is located on the boundary between Israel and Jordan at a lowest point on earth, at 400 meters (1,320 feet) below sea level. All waters from the region, including the biggest source, the ... Continue reading

IstheDeadSeareallydead
Geology

A Voggy Day On The Big Island

On the morning of February 8, 2000, Harry Kim, Director of Hawai`i County Civil Defense, asked radio stations on the Island of Hawai`i to broadcast a special message concerning the thick, acrid haze ... Continue reading

AVoggyDayOnTheBigIsland

Diamonds Improved by Irradiation?

IrradiationDiamondBesides hardness and texture, probably the most fascinating aspect of gems is their color. There are so many different and wonderful clear and foggy gems with colors that span almost the complete spectrum. Usually it's the impurities and the way they are bound to the mineral crystals that determines the color. For example, NaAl[Si2O6] crystal becomes one type of Jade when laced with chromium, an element that reflects a green part of the light spectrum and absorbs all other colors. Similarly Beryl, which is colorless in its pure mineral form, Be3Al2[Si6O18], becomes Emerald with chromium impurities.

These impurities get absorbed naturally into the crystalline structure of the mineral inside the Earth's crust. The process is stimulated by high temperatures, pressures and sometimes a little help from naturally occurring radiation sources. Clear gems such as diamond or quartz are rarely found colored. However, sometimes these clear gems already contain impurities that can be activated, i.e., the way they bond to the crystalline matrix can be changed by irradiating and heating these gems after they have been excavated.

One can produce bright yellow, blue or green diamonds by irradiating clear diamonds with a radioactive source such as Cobalt 60. Topaz, which is naturally colorless, can be transformed into a cinnamon brown. Fully transparent Quartz can be changed into prized foggy white if it contains enough aluminum impurities or into an Amethyst if it contains enough iron impurities. The problem with gem irradiation is that the final results are not predictable. The gamma radiation from the source basically rearranges the electrons and bonds between the mineral and impurities. Exactly what impurities are present and how they will be rearranged is a probability game. Vibrant colors do however increase the price of the gem significantly, hence most jewelers are willing to take this gamble. If you ever bought a colored diamond, did you ask your jeweler if the color was natural or a result of irradiation?