ScienceIQ.com

Poincare's Chaos

Over two hundred years after Newton published his laws of planetary motion the King Oscar II of Sweden and Norway sponsored a most unusual competition that would discover a whole new science. ...

Continue reading...

PoincaresChaos
Physics

When Do We Encounter Ionizing Radiation In Our Daily Lives?

Everyone who lives on this planet is constantly exposed to naturally occurring ionizing radiation (background radiation). This has been true since the dawn of time. The average effective dose ... Continue reading

IonizingRadiation
Biology

The Red-Cockaded Woodpecker

In the mid-l800s, naturalist John Audubon reported that the red-cockaded woodpecker was found abundantly in the pine forests of the southeastern United States. Historically, this woodpecker's range ... Continue reading

TheRedCockadedWoodpecker
Biology

Will That Be One Hump or Two?

Camels are highly adaptive to their environments. Often called the ships of the desert, they have been domesticated by humans for thousands of years, as beasts of burden and as transportation. What ... Continue reading

Humps
Geology

Arctic Carbon a Potential Wild Card in Climate Change Scenarios

The Arctic Ocean receives about 10 percent of Earth's river water and with it some 25 teragrams [28 million tons] per year of dissolved organic carbon that had been held in far northern bogs and other ... Continue reading

ArcticCarbon

The Wilkinson Microwave Anisotropy Probe (WMAP)

WilkinsonMicrowaveAnisotropyProbeThe cosmic microwave background (CMB) radiation is the radiant heat left over from the Big Bang. It was first observed in 1965 by Arno Penzias and Robert Wilson at the Bell Telephone Laboratories in Murray Hill, New Jersey. The properties of the radiation contain a wealth of information about physical conditions in the early universe and a great deal of effort has gone into measuring those properties since its discovery. This radiation (and by extension, the early universe) is remarkably featureless; it has virtually the same temperature in all directions in the sky.

In 1992, NASA's Cosmic Background Explorer (COBE) satellite detected tiny fluctuations, or anisotropy, in the cosmic microwave background. It found, for example, one part of the sky has a temperature of 2.7251 Kelvin (degrees above absolute zero), while another part of the sky has a temperature of 2.7249 Kelvin. These fluctuations are related to fluctuations in the density of matter in the early universe and thus carry information about the initial conditions for the formation of cosmic structures such as galaxies, clusters, and voids. COBE had an angular resolution of 7 degrees across the sky, 14 times larger than the Moon's apparent size. This made COBE sensitive only to broad fluctuations of large size.

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in June of 2001 and has made a map of the temperature fluctuations of the CMB radiation with much higher resolution, sensitivity, and accuracy than COBE. The new information contained in these finer fluctuations sheds light on several key questions in cosmology. By answering many of the current open questions, it will likely point astrophysicists towards newer and deeper questions about the nature of our universe.