ScienceIQ.com

When Motherhood Means More than One

These days, twins, triplets, and other multiple births are becoming more common, but how do they happen? Fraternal twins (or triplets, quadruplets, or more) develop when two or more eggs are fertilized by two or more sperm. This can happen when the ovaries release more than a single mature egg. These are essentially separate pregnancies, although ...

Continue reading...

MotherhoodMeansMoreOne
Engineering

Inkjet Printers

At the heart of every inkjet printer, whether it is a color printer or just B&W, there is an ink cartridge that gets shuttled back and forth across the page, leaving a trail of letters or colors. Upon ... Continue reading

InkjetPrinters
Engineering

X-Ray Astronomy vs. Medical X-Rays

It's natural to associate the X-rays from cosmic objects with an X-ray from the doctor's office, but the comparison is a bit tricky. A doctor's X-ray machine consists of two parts: an X-ray source at ... Continue reading

XRayAstronomyvsMedicalXRays
Engineering

Nothing Backwards About It

Almost anyone who's seen a picture of the experimental X-29 aircraft will remember it. Its unique wings make it one of the most distinctive aircraft designs ever. Rather than sticking straight out or ... Continue reading

NothingBackwardsAboutIt
Chemistry

Why Does Cement Set?

Concrete has been known for literally thousands of years. It is a testament to the enduring strength of this material that concrete structures from those long-ago times are still standing strong ... Continue reading

WhyDoesCementSet

Neutron Stars

NeutronStarsOrdinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% open space!

What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see-or feel-the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons!

Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. The result is a tiny star that is like a gigantic nucleus and has no empty space. Neutron stars are strange and fascinating objects. They represent an extreme state of matter that physicists are eager to know more about. Yet, even if you could visit one, you would be well-advised to turn down the offer.