ScienceIQ.com

Leading Killer Wears Two Faces

Diabetes is the 6th leading cause of death in the United States. About 17 million people (6.2% of the population) have diabetes. But the disease usually wears two faces. Type 1 diabetes affects young people and Type 2 diabetes affects adults. Doctors have determined that the causes are not the same. The effect though, is a manageable, but often ...

Continue reading...

Diabetes
Biology

Splitting Hairs

Pluck a single strand of hair from your head and you've lost what scientists call the hair shaft. The shaft is made of three layers, each inside the other. The outer casing is the cuticle. Under an ... Continue reading

SplittingHairs
Engineering

Moore's Law

Intel is the corporate giant known for manufacturing semiconductors, also called computer chips or integrated circuits (ICs), and its Pentium Processor. But Intel is also known for laying down the ... Continue reading

MooresLaw
Geology

What is Volcanic Ash?

Small jagged pieces of rocks, minerals, and volcanic glass the size of sand and silt (less than 1/12 inch or 2 millimeters in diameter) erupted by a volcano are called volcanic ash. Very small ash ... Continue reading

VolcanicAsh
Physics

The Weakest Force

Did you know that gravity is the weakest force in the universe? Well, it's true! There are four fundamental forces (that we know of) in our universe: Strong Nuclear, Electromagnetic, Weak Nuclear ... Continue reading

WeakForce

Cosmos Provides Astronomers with Planet-Hunting Tool

PlanetHuntingToolIf only astronomers had a giant magnifying glass in space, they might be able to uncover planets around other stars. Now they do -- sort of. Instead of magnifying a planet, astronomers used the magnifying effects of one star on a more distant star to reveal a planet around the closer star. The discovery marks the first use of a celestial phenomenon known as microlensing to locate a planet outside our solar system. A star or planet can act as a cosmic lens to magnify and brighten a more distant star lined up behind it. That's because the gravitational field of the foreground star bends and focuses light, like a glass lens bending and focusing starlight in a telescope. Albert Einstein predicted this effect in his theory of general relativity and confirmed it with our Sun.

The newly discovered star-planet system is 17,000 light years away, in the constellation Sagittarius. The planet, orbiting a red dwarf parent star, is most likely one-and-a-half times bigger than Jupiter. The planet and star are three times farther apart than Earth and the Sun.Together, they magnify a farther, background star some 24,000 light years away, near the Milky Way center. In most prior microlensing observations, scientists saw a typical brightening pattern, or light curve, indicating that a star's gravitational pull was affecting light from an object behind it. The latest observations revealed extra spikes of brightness, indicating the existence of two massive objects.

Dr. Bohdan Paczynski of Princeton University, Princeton, N.J., an OGLE team member, first proposed using gravitational microlensing to detect dark matter in 1986. In 1991, Paczynski and his student, Shude Mao, proposed using microlensing to detect extrasolar planets. Two years later, three groups reported the first detection of gravitational microlensing by stars. Earlier claims of planet discoveries with microlensing are not regarded as definitive, since they had too few observations of the apparent planetary brightness variations.