ScienceIQ.com

The Oldest Light in the Universe

A NASA satellite has captured the sharpest-ever picture of the afterglow of the big bang. The image contains such stunning detail that it may be one of the most important scientific results of recent years. Scientists used NASA's Wilkinson Microwave Anisotropy Probe (WMAP) to capture the new cosmic portrait, which reveals the afterglow of the big ...

Continue reading...

OldestLightUniverse
Geology

What Causes The Blue Color That Sometimes Appears In Snow And Ice?

Generally, snow and ice present us with a uniformly white face. This is because most all of the visible light striking the snow or ice surface is reflected back without any particular preference for a ... Continue reading

BlueColorSnowIce
Astronomy

Mixed Up In Space

Imagine waking up in space. Groggy from sleep, you wonder ... which way is up? And where are my arms and legs? Throw in a little motion sickness, and you'll get an idea of what it can feel like to be ... Continue reading

MixedInSpace
Astronomy

Mount Olympus

Olympus Mons, the largest volcano in the solar system, towers a breathtaking 25 km above the surrounding plains on Mars. Until recently scientists thought that Olympus Mons and other volcanoes on the ... Continue reading

MountOlympus
Medicine

Your Friend, the Fat Cell

A healthy, adult human body contains about 35 billion fat cells. Each contains about 0.5 micrograms of fat. Stored fat is essential to good health. Fat is the body's principal energy reserve. It is ... Continue reading

FatCell

Neutrinos to the Rescue

NeutrinosHave you ever wondered what the most abundant particle in the universe is after photons of light? The answer is: Neutrinos. These tiny, neutral and almost mass-less particles that move at almost the speed of light hardly ever interact with anything in the universe. In fact about ten thousand trillion neutrinos will pass through your body by the time you are finished reading this.

The existence of neutrinos was predicted by Wolfgang Pauli in 1930. After observing the beta decay, a process where a neutron (which was not yet discovered at the time) from atom's nucleus decays into a proton and an electron, it was noticed that the energy just did not add up. Namely, there was a missing amount of energy that was a threat to the well-established law of conservation of energy. Pauli then postulated that there must be a new particle which was not seen that would carry this missing difference in energy. He named it the 'neutron'. This name did not last too long since in 1932 James Chadwick actually discovered the neutron. Fermi then renamed it a neutrino, which in Italian means: little neutral one. It was only in 1956 that Clyde Cowan and Fredrick Reines actually detected neutrinos from a nuclear power plant for the first time.

Most of the neutrinos in the universe were created during the first few seconds after the Big Bang. Thanks to their weak interaction with matter, most of those neutrinos are still around. Neutrinos are also created in nuclear power plants and in our Sun and other stars where, in the process of fusion, four protons and two electrons get fused into an atom of Helium and in the process create two neutrinos. We still know very little about these elusive particles, namely that their mass is very small (smaller than that of the electron), but we don't know exactly what that mass is. We also believe that they travel at or close to the speed of light, but again we are not sure what that speed is. Further research into neutrinos will not only answer these questions but will also allow us to peek into the early universe, to learn about the formations of stars and explosions of supernovas. The message is in the neutrinos.