ScienceIQ.com

Mercury

The small and rocky planet Mercury is the closest planet to the Sun; it speeds around the Sun in a wildly elliptical (non-circular) orbit that takes it as close as 47 million km and as far as 70 million km from the Sun. Mercury completes a trip around the Sun every 88 days, speeding through space at nearly 50 km per second, faster than any other ...

Continue reading...

Mercury
Engineering

Smoke Detectors

How does a smoke detector 'know' when there is a fire? Smoke detectors use one of two different methods to do their job, and for both methods the basic operating assumption is the cliche 'where ... Continue reading

SmokeDetectors
Biology

Monkey See Monkey Do: Mirror Neurons May Lie At The Root Of Language

Self-awareness, the ability to infer the mental states of others, and language are considered uniquely human cognitive skills. But they didn't spring into the human brain out of nowhere. A ... Continue reading

MonkeySeeMonkeyDo
Engineering

Inkjet Printers

At the heart of every inkjet printer, whether it is a color printer or just B&W, there is an ink cartridge that gets shuttled back and forth across the page, leaving a trail of letters or colors. Upon ... Continue reading

InkjetPrinters
Biology

The Journey of the Monarchs

The life of Monarch butterflies is an amazing one. They develop as caterpillars from the roughly 400 eggs each mother lays on the underside of milkweed plant leaves. Then they spend their brief lives ... Continue reading

MonarchButterflies

What Is A Half-life?

WhatIsAHalflifeWhen isotopes break down, or decay, they usually split apart into two smaller atoms. Excess neutrons and protons are often sent flying off through space, taking the excess energy of the atoms with them. Interestingly, one form of radioactive decay product is the 'alpha particle', which is in reality just a helium atom with no electrons. Measurement of the amount of radiation coming from decaying isotopes is observed to be exponential. That is, it does not decrease at a constant (linear) rate, but at an ever-decreasing rate that depends upon the amount of material remaining. Materials that decompose in this way are said to have a 'half-life'. That doesn't mean that they exist in some weird pseudo-reality. What it does mean is that it takes that amount of time for half of the material present to break down.

It is tempting to think that materials undergoing this decay process can only have two half-lives, in which the first half of the material decays followed by a similar period of time in which the second half of the material decays. This is not the case, however, because the rate at which decay occurs depends on the amount of material present. Thus, as the quantity of material present decreases, so does the actual rate at which the material decays.

In the first half-life period, one half of the original quantity of material decays and one half remains. During the second half-life period, one half of the remaining half decays, leaving one quarter of the original amount. After a third half-life period, one eighth of the original amount of material remains, and so on. In general mathematical terms, if the number of half-life periods is represented by 'n', and the original quantity of material is represented by 'x', then the amount of original material remaining at the end of that time is given by - M = (x/2) ^n, or (x/2 ^n)